Abstract

Development of metal-anode rechargeable batteries is a challenging issue. Especially, magnesium rechargeable batteries are promising in that Mg metal can be free from dendrite formation upon charging. However, in case of oxide cathode materials, inserted magnesium tends to form MgO-like rocksalt clusters in a parent phase even with another structure, which causes poor cyclability. Here, a design concept of high-performance cathode materials is shown, based on: i) selecting an element to destabilize the rocksalt-type structure and ii) utilizing the defect-spinel-type structure both to avoid the spinel-to-rocksalt reaction and to secure the migration path of Mg cations. This theoretical and experimental work substantiates that a defect-spinel-type ZnMnO3 meets the above criteria and shows excellent cycle performance exceeding 100 cycles upon Mg insertion/extraction with high potential (≈2.5V vs Mg2+ /Mg) and capacity (≈100mAhg-1 ). Thus, this work would provide a design guideline of cathode materials for various multivalent rechargeable batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.