Abstract

The ubiquitin-proteasome system (UPS) is responsible for degrading over 70-80% of cellular proteins. Consequently, proteolysis-targeting chimeras (PROTACs) are developed to induce the ubiquitination and subsequent degradation of proteins of interest (POIs) by the UPS. To amplify the therapeutic efficacy of PROTACs, energy metabolism regulation is first harnessed to boost UPS function in tumor cells. Proteomic and ubiquitinome analyzes reveal that total ubiquitinated proteins and proteasome activity are significantly increased in 143B and MDA-MB-231 tumor cells following fasting-mimicking diet (FMD) treatment. As a result, the degradation efficiency of PROTACs targeting focal adhesion kinase (FAK-P) or bromodomain-containing protein 4 (BRD4-P) is significantly enhanced in FMD-treated 143B and MDA-MB-231 tumor cells. Then, silica-coated iron oxide nanoparticles are developed modified with tumor cell membranes for targeted delivery of PROTACs. Magnetic resonance imaging (MRI) and fluorescence imaging confirm that nanocarriers significantly improve the delivery efficiency of PROTACs in FMD-treated 143B or MDA-MB-231 tumors. In vivo studies demonstrate that the antitumor efficacy of FAK-P and BRD4-P is greatly augmented when combined with targeted delivery and FMD treatment. Overall, this study presents a strategy to enhance the efficacy of PROTACs in cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.