Abstract

Porous microspheres fabricated from bioceramics have great potential for cell delivery in injectable tissue engineering application. The size and structure of pores in the microspheres are important for the effective protection and transportation of cells. In this study, porous hydroxyapatite microspheres are fabricated through the water-in-oil emulsion method followed by a calcination treatment at the high temperature. Both self-made resorcinol-formaldehyde (RF) composite spheres and camphene are used as pore-forming agents to produce big pores corresponding to the size of RF spheres and connected channel among big pores in hydroxyapatite matrix. The properties of the microspheres are characterized using X-ray diffraction, thermogravimetry analysis, universal material machine, field emission scanning electron microscopy. Cell assays are carried out to evaluate the cellular compatibility of the microspheres. The results showed that the hydroxyapatite microspheres with controllable pore structure and high porosity could be fabricated by this method, which have better strength to resist the compressive force. The microspheres are conducive to support adhesion, proliferation and differentiation of MC3T3-E1 cells. The results indicate that the obtained porous hydroxyapatite microspheres can be a permeable microenvironment for cell delivery in injectable tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.