Abstract

The graphene oxide powder (GOP) obtained from the spray drying process often exhibits poor re-dispersibility which is considered due to the partial reduction of GO sheets. The reduction of drying temperature can effectively increase the re-dispersibility of GOP, but result in a decreased drying efficiency. Herein, we found that the re-dispersibility of GOP is strongly affected by its microstructure, which is determined by the feed concentration. With the increase of feed concentration, the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly, making the morphology of the GOP transform from ball-like (the most crumpled one) to flake-like (the least crumpled one), and the 0.8 mg·ml−1 is the threshold concentration for the morphology, structure, and re-dispersibility change. Once the feed concentration reaches 0.8 mg·ml−1, the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree, which greatly improves the polar parts surface tension of the solid GOP, making the GOP easier to form hydrogen bonding with water during the redispersion process, thus stabilizing dispersion. This work provides useful information for understanding the relationships between the morphology, microstructure, and final re-dispersibility of GOPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call