Abstract

This paper investigates and compares the structure-dependent contact barrier effects on the electrical performance of two bottom-contact (BC) structure (staggered and inverted coplanar) organic thin-film transistors (OTFTs) by numerical simulations. The drain saturation current ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dsat</sub> ) of the staggered device is found to be more sensitive to the variation of the source/drain (S/D) electrode thickness than that of the inverted coplanar one. The inverted coplanar device shows stronger dependence of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dsat</sub> on the contact barrier than the staggered device, and the dependence is also much more affected by the step coverage profile of the semiconductor layer on top of the S/D electrodes. For the inverted coplanar structure OTFTs, a steeper step coverage profile and a lower contact barrier can help to achieve better tolerance of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dsat</sub> to the variations of the contact barrier and step profile, respectively. The gate structure (self-aligned or fully covered) does not show any influence. The study forms a clear understanding of the device-structure-dependent carrier transport mechanisms in BC OTFTs and could also provide important guidelines for optimal device structure design and related process development for BC OTFTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.