Abstract
The asymmetric fluorofunctionalization of γ,γ-disubstituted allylamine derivatives (e.g., 3, 7, and 8) was investigated using our dianionic phase-transfer catalyst. Depending on the substituents on the alkene moiety, the reaction afforded chiral allylic fluorides and fluorinated dihydrooxazines in a highly enantioselective manner (up to 99% ee). The absolute stereochemistry of these products was found to be opposite to that in our previously reported fluorocyclization of γ-monosubstituted allylic amides (e.g., 13 and 14). To probe this interesting phenomenon, we investigated the influence of the substitution pattern of the alkene moiety on the reaction by means of NMR experiments and kinetic studies. The rate laws of the deprotonative fluorination and the fluorocyclization of γ,γ-disubstituted substrates were v = k[cat]0.6, while that of the fluorocyclization of γ-monosubstituted substrates was v = k[substrate][cat]0.4. An exponent of less than 1 suggests the involvement of an aggregated state of the catalyst ion pair in the catalytic cycle. Interestingly, a positive nonlinear effect was observed in the reactions of the γ,γ-disubstituted substrates, while a negative nonlinear effect was observed in the case of the γ-monosubstituted substrates. Thus, the reaction pathway depends on the presence or absence of an alkyl substituent at the γ position of the substrates, and on the basis of our mechanistic studies we propose that the active catalytic species for γ,γ-disubstituted substrates is a catalyst ion pair aggregate, whereas that for γ-monosubstituted substrates is the more active monomeric catalyst ion pair species, even though its concentration would be low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.