Abstract

Brain age prediction as well as the prediction difference has been well examined to be a potential biomarker for brain disease or abnormal aging process. However, less knowledge was reported for the cognitive association within normal population. In this study, we proposed a novel approach to brain age prediction by structure-decoupled functional connectome. The original functional connectome was decomposed and decoupled into a structure-decoupled functional connectome using structural connectome harmonics. Our method was applied to a large dataset of normal aging individuals and achieved a high correlation between predicted and chronological age (r = 0.77). Both the original FC and structure-decoupled FC could be well-trained in a brain age prediction model. Significant remarkable relationships between the brain age prediction difference (predicted age minus chronological age) and cognitive scores were discovered. However, the brain age-predicted difference driven by structure-decoupled FC showed a stronger correction to the two cognitive scores (MMSE: r = -0.27, P -value = 0.002; MoCA: r = -0.32, P -value = 0.0003). Our findings suggest that our structure-decoupled functional connectivity approach could provide a more individual-specific functional network, leading to improved brain age prediction performance and a better understanding of cognitive decline in aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.