Abstract

Structural and dynamical properties of the hydrated Cs+ ion have been investigated by performing ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at different quantum mechanical levels (HF, B3LYP and BP86). The first shell coordination number was found to be ∼8 in the HF and ∼9 in the B3LYP and BP86 case and several other structural parameters such as angular distribution functions, radial distribution functions, and tilt- and θ-angle distributions allowed to fully characterize the hydration structure of the Cs+ ion. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion−ligand motions, as well as reorientation times. The strong “structure breaking” effect of Cs+ can be interpreted on the basis of different dynamical parameters such as accelerated water reorientation, mean ligand residence time, and the number of ligand exchange processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call