Abstract
Structural and dynamical properties of Zn(II) in aqueous solution were investigated, based on an ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation at double-zeta Hartree-Fock quantum mechanical level including the first and second hydration shells into the QM region. The inclusion of the second shell in the QM region resulted in significant changes in the properties of the hydrate. The first shell coordination number was found to be 6, the second shell consists of approximately 14 water molecules. The structural properties were determined in terms of RDF, ADF, tilt and theta angle distributions, while dynamics were characterized by mean ligand residence times, ion-ligand stretching frequencies and the vibrational and librational motions of water ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.