Abstract

The structural and dynamical properties of high-spin Ru 2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru 2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru 2+ and the 6-31G ∗ basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru 2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru 2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call