Abstract

Liver X Receptors (LXRs) are members of the nuclear receptor superfamily that regulate cholesterol metabolism. LXRs have been suggested as promising targets against many neurodegenerative diseases (NDDs). The present study was aimed to identify novel non-steroidal molecules that may potentially modulate LXR activity. The structure-based virtual screening (SBVS) was used to search for suitable compounds from the Asinex library. The top hits were selected and filtered based on their binding affinity for LXR α and β isoforms. Based on molecular docking and scoring results, 24 compounds were selected that had binding energy in the range of − 13.9 to − 12 for LXRα and − 12.5 to − 11 for LXRβ, which were higher than the reference ligands (GW3965 and TO901317). Further, the five hits referred to as model 29, 64, 202, 250, 313 were selected by virtue of their binding interactions with amino acid residues at the active site of LXRs. The selected hits were then subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis and blood-brain permeability prediction. It was observed that the selected hits had better pharmacokinetic properties with no toxicity and could cross blood-brain barrier. Further, the selected hits were analysed for dynamic evolution of the system with LXRs by molecular dynamics (MD) simulation at 100 ns using GROMACS. The MD simulation results validated that selected hits possess a remarkable amount of flexibility, stability, compactness, binding energy and exhibited limited conformational modification. The root mean square deviation (RMSD) values of the top-scoring hits complexed with LXRα and LXRβ were 0.05–0.6 nm and 0.05–0.45 nm respectively, which is greater than the protein itself. Altogether the study identified potential non-steroidal LXR modulators that appear to be effective against various neurodegenerative conditions involving perturbed cholesterol and lipid homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.