Abstract
Accurate determination of the thermal rate constants for combustion reactions is a highly challenging task, both experimentally and theoretically. Machine learning has been proven to be a powerful tool to predict reaction rate constants in recent years. In this work, three supervised machine learning algorithms, including XGB, FNN, and XGB-FNN, are used to develop quantitative structure-property relationship models for the estimation of the rate constants of hydrogen abstraction reactions from alkanes by the free radicals CH3, H, and O. The molecular similarity based on Morgan molecular fingerprints combined with the topological indices are proposed to represent chemical reactions in the machine learning models. Using the newly constructed descriptors, the hybrid XGB-FNN algorithm yields average deviations of 65.4%, 12.1%, and 64.5% on the prediction sets of alkanes + CH3, H, and O, respectively, whose performance is comparable and even superior to the corresponding one using the activation energy as a descriptor. The use of activation energy as a descriptor has previously been shown to significantly improve prediction accuracy ( Fuel 2022, 322, 124150) but typically requires cumbersome ab initio calculations. In addition, the XGB-FNN models could reasonably predict reaction rate constants of hydrogen abstractions from different sites of alkanes and their isomers, indicating a good generalization ability. It is expected that the reaction descriptors proposed in this work can be applied to build machine learning models for other reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.