Abstract
Adenosine is an immunosuppressive factor in the tumor microenvironment mainly through activation of the A2A adenosine receptor (A2AR), which is a mechanism hijacked by tumors to escape immune surveillance. Small-molecule A2AR antagonists are being evaluated in clinical trials as immunotherapeutic agents, but their efficacy is limited as standalone therapies. To enhance the antitumor effects of A2AR antagonists, dual-acting compounds incorporating A2AR antagonism and histone deacetylase (HDAC) inhibitory actions were designed and synthesized, based on co-crystal structures of A2AR. Compound 24e (IHCH-3064) exhibited potent binding to A2AR (Ki = 2.2 nM) and selective inhibition of HDAC1 (IC50 = 80.2 nM), with good antiproliferative activity against tumor cell lines in vitro. Intraperitoneal administration of 24e (60 mg/kg, bid) inhibited mouse MC38 tumor growth with a tumor growth inhibition rate of 95.3%. These results showed that dual-acting compounds targeting A2AR and HDAC are potentially immunotherapeutic agents that are worth further exploring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.