Abstract

Transglycosylase (TGase) is essential to biosynthesis of peptidoglycan for formation of bacterial cell wall. Moenomycin is a potent TGase inhibitor, but not used in clinic treatment due to its poor pharmacokinetics. The E−F disaccharide, phosphoglycerate and lipid tail in moenomycin are crucial elements for TGase inhibition and antibacterial activity. Based on this scaffold, a series of truncated mimics comprising biphenyl, amine linker and 2-alkoxy-3-phosphorylpropanoate moieties were designed to test their TGase inhibitory activity. In this design, the phosphorylpropanoate group is a surrogate of phosphoglycerate with improved stability. A library of lipid tails can be constructed by a straightforward approach using Cu(I)-catalyzed (3 + 2) cycloaddition reactions, and the as-synthesized triazole ring can provide additional hydrogen bonds in the TGase active site. Our molecular docking experiments reveal that the biphenyl group provides π–π and π–cation interactions to act as a simplified alternative of the C–E disaccharide in moenomycin. To play the role of the oxonium transition state in transglycosylation, the amine linker exists as a positively charged species in physiological condition to attain electrostatic interactions with acidic residues. In this study, two biphenyl-linked 2-alkoxy-3-phosphorylpropanoate compounds (8 and 10) are found to exhibit modest inhibitory activity (IC50 ≈ 150 μM) against the TGase of Acinetobacter baumannii and good antibacterial activity against Staphylococcus aureus (MIC = 6.3 μM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.