Abstract

Mesoporous metal oxides (CeO 2−δ)–YSZ have been synthesized by a versatile direct synthesis method using ionic cetyltrimethylammonium bromide (CTAB) and different nonionic (block copolymers) as surfactants and urea as hydrolyzing agent. The synthesis was realized at pH = 9 using tetraethylammonium hydroxide (TEAOH) as pH mediator. Calcination at 550 °C led to the formation of crystalline metal oxides with uniform mesoporosity. The obtained materials have been characterized by thermogravimetric analysis (TG-DTG), wide and small-angle X-ray diffraction (XRD), Raman spectroscopy, Brunauer, Emmett and Teller (BET) surface area analysis, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All the obtained materials exhibits mesoporous structure, crystalline structure indexed in a cubic symmetry, showing a high surface area, a uniform and narrow pore size distribution, spherical morphology typical for the mesoporous materials. The crystalline and mesoporous structures, surface chemistry and stoichiometry for the samples synthesized using ionic and nonionic surfactants have been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.