Abstract

Characteristics of the ion pairs HCOO−·Na+·H2O, HCOO−·K+·H2O, and also Na+·H2O and K+·H2O were calculated by the nonempirical Hartree—Fock—Roothan linear-combination-of-atomic-orbitals self-consistent-field (SCF) molecular-orbital method in a two-exponent Dunning basis using an extended set of Huzinaga—Dunning Gaussian functions. The basis was supplemented by polarization functions ofd type for the oxygen atom andp type for the H atom and also by diffusion functions ofp type for the oxygen atom. Characteristics of the ion pairs HCOO−·Li+ and HCOO−·Na+ were calculated taking into account the electronic correlation according to the Moller — Plesset second-order perturbation theory. Significant quantitative difference was observed in the hydration of ionogens and free cations. The stability of the ionogens HCOOMe in aqueous solutions, increasing from Li+ to Cs+, is not explained by the difference between the energies of complexation and the energies of hydration of the cations. The better solubility of the salt molecule with a cation of smaller radius is due to the higher degree of hydration of that ionogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call