Abstract

Novel interface-stabilized ceria nanophases have been grown on TiO2(110) by physical vapor deposition. At low coverage, dumbbell nanostructures constituted by reconstructed titania and ceria clusters are formed, while long range ordered nanoxides can be obtained by increasing the ceria dose. Scanning tunneling microscopy and photoemission spectroscopy were used to characterize the electronic properties of the films, showing that the TiO2 substrate can effectively stabilize ceria in reduced form over a wide range of experimental conditions. Epitaxial coupling is a very useful tool for tuning the chemical properties of mixed oxide systems. The special electronic properties of the films have a direct counterpart in the chemical activity, which has been investigated by temperature programmed desorption using methanol as a probe molecule. The experimental results indicate an exceptional activity of the ceria-titania interface in the selective dehydration of methanol to formaldehyde at an unprecedented low temperature (330 K).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.