Abstract

The subgraph homeomorphism problem has been shown by Robertson and Seymour to be polynomial-time solvable for any fixed pattern graph H. The result, however, is not practical, involving constants that are worse than exponential in |H|. Practical algorithms have only been developed for a few specific pattern graphs, the most recent of these being the wheels with four and five spokes. This paper looks at the subgraph homeomorphism problem where the pattern graph is a wheel with six spokes. The main result is a theorem characterizing graphs that do not contain subdivisions of W 6. We give an efficient algorithm for solving the subgraph homeomorphism problem for W 6. We also give a strengthening of the previous W 5 result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.