Abstract

AbstractThe present study focuses on structural and dynamical properties of the catalytic layer for high‐temperature polymer electrolyte fuel cells (HT‐PEFC). The catalytic layer is a composite material containing nanoporous carbon, poly(tetrafluoroethylene) (PTFE) and platinum (Pt) nanoparticles. The structure of the catalyst is investigated using small angle X‐ray scattering (SAXS) following different preparation steps of the electrodes: pure carbon support, platinum/carbon (Pt/C) powder and finally, complete catalytic layer. The structural properties of the Pt/C powder containing different amounts of Pt are discussed along with the size distribution of Pt particles and their arrangement on the surface of the carbon support. Following the preparation sequence of the catalytic layer based on the Pt/C powders the electrodes with different final Pt loadings are analyzed in details. Investigation of the structure of the catalytic layer is accompanied by the study of nanosecond dynamics of the phosphoric acid (PA) in the catalytic layer containing different amount of Pt by means of neutron backscattering spectroscopy. The structure of the catalytic layer is mostly determined by the structure of the catalytic powder and does not vary significantly with Pt loading in the electrode. The behavior of the PA is sensitive to the Pt content in the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.