Abstract

Zirconium oxide (ZrO2) thin films deposited at room temperature by the filtered cathodic vacuum arc (FCVA) technique are detailed in terms of the film structure, composition, morphology, and optical and mechanical properties, which are tailored by the oxygen (O2) flow rate during deposition. The relationships between the film structure, composition, morphology, and properties are emphasized. With an increasing O2 flow rate, the film evolves in structure from amorphous, through a pure monoclinic phase with varying preferential orientation, to amorphous again, accompanied by an increase in the O/Zr atomic ratio and a conversion of Zr ions from low oxidation states into Zr4+. Such a structural trend arises from the change in composition, and influences the film morphology and mechanical properties so that the amorphous films exhibit small clusters on the surface and smoother morphology as well as lower hardness compared with the polycrystalline films. The film composition rather than the density dominates the optical properties, where the transmittance and the optical band gap increase with increasing O/Zr values, while the refractive index and extinction coefficients behave conversely with the lowest refractive index (2.16 at 550 nm) approaching the bulk value (2.2) .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call