Abstract

A series of sulfopropyl chitins (SCs) with the degree of substitution (DS) ranging from 0.11 to 0.40 and high degree of acetylation (DA ≥ 0.82) were homogeneously synthesized by reacting chitin with sodium 3-chloro-2-hydroxypropanesulfonate (SCHPS) in NaOH/urea aqueous solutions under mild conditions. The structure and properties of SCs were characterized with 1H NMR, CP/MAS 13C NMR, FT-IR, XPS, XRD, elemental analysis, GPC, AFM, ζ-potential and rheological measurements. The mild reaction conditions resulted in less N-deacetylation and uniform structures with substitution occurring predominantly at the hydroxyl groups at C6 of the chitin backbone. The DS value for SC soluble in dilute alkali solution is as low as 0.16. SC exhibited good solubility in distilled water when its DS value reached 0.28. Water-soluble SCs self-assembled in water into micelles by the attractive hydrophobic and hydrogen-bonding interactions between polymer chains. The water-insoluble SC-2 with lower DS could thermally form smart hydrogels at body temperature (37 °C) in physiological condition. Moreover, the SCs exhibited good biocompatibility, making them suitable for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call