Abstract
The aim of this study is to obtain and characterize starch films structurally modified by in situ precipitation of BaSO4 combined with mechanical activation of casting dispersion in a rotor-stator device. By the rheological method, it was found that the modification causes a decrease in the ability of casting dispersions to structure over time. Composite films with a filler content of 0 %–15 % (w/w) were characterized using optical and SEM microscopy, FT-IR spectroscopy, and tensile and moisture resistance testing data. The maximum increase in strength (by 70 %) and elongation at break (by 870 %) is achieved with a filler content of 5 % and 15 %, respectively. An increase in the filler content to 5 % causes an increase in starch recrystallization rate, but at concentrations above 5 % of BaSO4, it inhibits retrogradation. The films obtained by mechanical activation with optimized parameters were uniformly translucent, had lower water vapor permeability than films made from starch alone, had high flexibility, and did not warp or shrink. The developed high-performance, environmentally friendly method can be recommended for the large-scale production of starch-based composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.