Abstract
Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, 13C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol–gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were α-helix and random coil in solution. There also existed a little β-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no α-helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol–gel transformation. The velocity increased obviously when the temperature was above 30 °C. During the sol–gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to β-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have