Abstract
The composition and structure of polymer largely determine the properties of its final products. As a novel polymer material, the composition, structure, and properties of the isotactic polypropylene/polybutene-1 in-reactor alloy (iPP/iPB alloy) synthesized by sequential two-stage polymerization with Ziegler-Natta catalyst were correlated for the first time in this work. The iPP/iPB alloy was fractionated by temperature rising elution fractionation (TREF) in a broad temperature ranged from −30 °C to 140 °C, and the chain microstructures and sequence distributions of isolated fractions were analyzed by DSC, GPC, 13C-NMR, and FTIR. The iPP/iPB alloy was composed of five components, namely high isotactic PB (iPB, 85.8 wt%), medium isotactic PB (mPB, 5.1 wt%), poly((butene-1)-block-propylene) copolymers (PB-b-PP, 4.1 wt%) which contained PB and PP blocks with different lengths according to the isolation temperature, isotactic PP (iPP, 2.7 wt%), and atactic PB (aPB, 2.3 wt%). Compared to other commercial pipe materials, the iPP/iPB alloy presented outstanding thermal creep resistance and gas permeability resistance, high strength and low deformation at high temperature, and appropriate flexural strength. The roles of PP and PB-b-PP components in the alloy were interpreted. This work is expected to elucidate the potential application of iPP/iPB alloy as pipe materials and provide solutions for the design and synthesis of high performance pipe materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have