Abstract
Dense Bi2Te2W3O16 ceramics were prepared by the conventional solid‐state reaction route. X‐ray diffraction data show the room‐temperature (RT) crystal symmetry of Bi2Te2W3O16 to be well described by the centrosymmetric monoclinic C2/c space group [a = 21.280(5) Å, b = 5.5663(16) Å, c = 12.831(3) Å and β = 124.014(19)° and Z = 4]. Raman spectroscopy analyses are in broad agreement with space group assignment, but also revealed the presence of Bi2W2O9 as a secondary phase. This phase is present as plate‐like grains embedded on a fine‐grained equiaxed matrix, as revealed by scanning electron microscopy. From the fitting of infrared reflectivity data the relative permittivity, εr, was estimated as 34.2, and the intrinsic quality factor, Qu × f as 57 500 GHz. At RT and microwave frequencies, Bi2Te2W3O16 ceramics sintered at 720°C for 6 h exhibit εr ~ 34.5, Qu × f = 3173 GHz (at 7.5 GHz), and temperature coefficient of resonant frequency, τf = −92 ppm/°C. This shows a good agreement between the estimated and measured εr values, but also shows that, in principle, the dielectric losses of the ceramics are of extrinsic origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.