Abstract

The structure and mechanical properties of a high-carbon eutectic steel subjected to the cold plastic deformation by hydrostatic extrusion in a wide range of true strain have been studied. Using scanning and transmission electron microscopy, it has been shown that the formation of cellular, fragmented, and submicrocrystalline structures occurs in the ferritic constituent of the pearlite structure of the steel upon extrusion. This is a consequence of the occurrence of dynamic recovery and continuous dynamic and post-dynamic recrystallization, which cause a decrease in the density of free dislocations at the true strain of more than 1.62. The partial dissolution of the carbide phase is also observed. It has been found that, at a true strain of up to 0.81, the strength properties of the investigated steel are determined mainly by subgrain, dislocation, and precipitation mechanisms of the strengthening; in the deformation range of 0.81–1.62, the role of the grainboundary strengthening increases. At strains above 1.62, grain-boundary strengthening is a prevailing mechanism in the formation of the level of strength properties of the extruded U8A steel. The ultimate tensile strength and yield stress over the entire strain range only uniquely correlate with the density of highangle boundaries; the dependences of the strength characteristics on other structural parameters are not monotonic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.