Abstract

The effect of heat treatment on the microstructure and mechanical properties of Febal-0.1 wt.%C-12Cr-3Co-2.5W-1Cu-VNbTaBN steel was investigated. After normalization in the range of 1050-1150°C, the martensitic structure was dominant; δ-ferrite content was about 10%. When the temperature of normalizing increased from 1050°C to 1150°C, the average size of prior austenite grains increased from 44 to 68 µm. After tempering at 750, 770 and 800°C, tempered martensitic lath structure with a high dislocation density within martensitic laths contained nanosized M23C6 carbides along the boundaries of prior austenite grains and laths and (Ta,Nb)X carbonitrides randomly distributed in the ferritic matrix. The average sizes of M23C6 carbides and (Ta,Nb)X carbonitrides were about 50 nm and 40 nm, respectively, regardless of tempering temperature. The M6C carbide particles were also observed along the boundaries of prior austenite grains and pockets as well as along the boundaries between δ-ferrite and martensite; their amount was negligible. When tempering temperature increased from 750 to 800°C, the particle density on the boundaries between δ- ferrite/martensite decreased from 3.8 to 0.2 µm-1. A relationship between the lath size (h) and the density of free dislocations (ρ) can be described as h = (5.41/√ρ) - 0.07. Increasing the tempering temperature to 800°C led to a decrease in the hardness up to ∼220 HB, yield stress and ultimate tensile stress up to 520 and 700 MPa, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call