Abstract

A comparative study of structural and magnetic properties of MnZn spinel ferrite (SF) and ZnO coated MnZn ferrite (ZF) nanoparticles (NPs) has been carried out. The as-prepared NPs show a single phase cubic spinel structure, with lattice parameter ~8.432Å. However, α-Fe2O3 impurity phase emerge from SF particles when subjected to annealing at 600°C in air. The weight fraction of α-Fe2O3 phase increases with increasing Mn concentration (9% for x=0.2 and 53% for x=0.6). On the other hand in ZF (x=0.2 and 0.4) NPs no trace of impurity phase is observed when annealed at 600°C. The magnetic measurements as a function of field and temperature revealed superparamagnetic like behavior with cluster moment ~104μB in as-prepared particles. The cluster size obtained from the magnetic data corroborates well with that estimated from structural analysis. Present results on ZnO coated MnZn ferrite particles suggest that an interfacial (ZnO@SF) reaction takes place during annealing, which results in formation of Zn-rich ferrite phase in the interface region. This leads to deterioration of magnetic properties even in the absence of α-Fe2O3 impurity phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.