Abstract
The structures and magnetic properties of the PP[Formula: see text]+[Formula: see text]Fe3O4 nanocomposites manufactured by different technological techniques were studied in this work. Polymeric nanocomposite materials based on PP[Formula: see text]+[Formula: see text]Fe3O4 were obtained by two technological methods: hot pressing and extrusion. Scanning electron microscopy (SEM) and AFM investigations of nanocomposites were carried out for structure analysis. It was found that the distribution of Fe3O4 nanoparticles in the polymer matrix for nanocomposites obtained by the hot pressing method is uniform and monodisperse. Compared to this, the heterogeneous and inhomogeneous distribution of nanoparticles in the polymer matrix for the samples that were produced through extrusion method was observed. Furthermore, the nanocomposite samples produced via the extraction method have a lower surface regularity rather than those obtained by hot pressing. M(H) and M(T) studies of polymer nanocomposite samples synthesized through both technological methods were performed. Studies have shown that for relatively low concentrated samples — PP[Formula: see text]+[Formula: see text]10% Fe3O4, the values of the saturation magnetization were close, but the magnetization of nanocomposites obtained by heat pressing was slightly higher than the other samples. This is because the samples obtained by hot pressing method are characterized by higher uniformity and structure that is called “flat packaging”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.