Abstract

Organic ionic plastic crystals (OIPCs) are emerging as an important material family for solid-state electrolytes and many other applications. They have significant advantages over conventional electrolyte materials, such as high ionic conductivity, non-flammability, and plasticity. Various nuclear magnetic resonance (NMR) spectroscopy techniques including solid-state NMR, pulsed-field gradient (PFG) NMR, and magnetic resonance imaging (MRI) etc., provide us a versatile toolkit to understand the fundamental level structures, molecular dynamics, and ionic interactions in these materials. This article reviews the commonly used NMR methods including solid- and solution-state NMR, PFG-NMR, dynamic nuclear polarization (DNP) and the application of these methods in revealing the microscopic level structures and ion-transport mechanisms in OIPC materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call