Abstract

The hard-to-remove lattice water has been regarded as a significant obstacle impeding the practical use of Prussian blue analogue cathodes for sodium-ion batteries. This work monitored the electrochemical evolution of a hydrated monoclinic sodium manganese hexacyanoferrate cathode by solid-state nuclear magnetic resonance (NMR). For the first time, we established a correlation between the chemical shifts of 23Na NMR signals and the presence or absence of lattice water within this cathode. Through this method, we verified the electrochemical dehydration process that coincides with the merging of two redox platforms and a phase transformation in the initial cycles. Furthermore, we discovered that the lattice water is completely removed after several-day cell rest following a single activation cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.