Abstract

Time dependent development of the spatial organization of NH4+- and NO2−-oxidizing bacterial populations in a domestic wastewater biofilm and in an autotrophic nitrifying biofilm were investigated by fluorescent in situ hybridization (FISH) with a set of 16S rRNA-targeted oligonucleotide probes. Population dynamics of nitrifying bacteria in the biofilms were correlated with the biofilm performance. In situ hybridization indicated that Nitrosomonas spp. (excluding probe NEU stained NH4+-oxidizing bacteria: i.e., N. marina-lineage, N. europaea-lineage, N. eutropha, and N. halophila) and Nitrospira-like bacteria were the numerically dominant nitrifying species in the domestic wastewater biofilm. However, probe NEU stained NH4+-inoxidizing bacteria became dominant populations in the autotrophic nitrifying biofilm (which were initially cultured with the primary settling tank effluent) after switching to the synthetic media. This population shift might be attributed to the effect of NO2−-–N accumulation and higher growth rates of N. europaea-lineage and N. eutropha, outcompeting other Nitrosomonas spp. in the synthetic medium. This evidence indirectly supports that N. europhaea has been most commonly isolated and studied in most of the previous researches. For the spatial organization of NH4+- and NO2−-oxidizing bacterial populations, bacteria of the genus Nitrobacter could not be detected, instead Nitrospira-like bacteria were found as the main nitrite-oxidizing bacteria in both biofilms. Whereas most of the ammonia-oxidizing bacteria were found throughout the biofilms, the location of nitrite-oxidizing bacteria was restricted to the active nitrite-oxidizing zone, which was detected in the inner part of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of NO2−-oxidizing bacteria, as determined with FISH. These observations have considerable significance to our understanding of microbial nitrification occurring in wastewater treatment processes and in the natural environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.