Abstract

Double ionization spectra of isothiocyanic acid (HNCS) have been measured using multi-electron and multi-ion coincidence techniques combined with high-level theoretical calculations. The adiabatic double ionization energy of HNCS is found at 27.1 ± 0.1eV and is associated with the formation of the X 3A″ ground state of HNCS2+. The characteristics of different dissociation channels are examined and compared to the results of electronic structure calculations obtained by systematically elongating the three bonds H-NCS, HN-CS, and HNC-S. For instance, the adiabatic double ionization energy of the NCS fragment is deduced to be 30.95 ± 0.5eV. In addition, the C+ and NS+ dissociation channels are of particular interest, possibly indicating the involvement of a structural rearrangement process upon doubly ionizing HNCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.