Abstract

AbstractThe incorporation of SiOC polymer‐derived ceramics into porous carbon materials could provide tailored shapeable, mechanical, electrical, and oxidation‐resistant properties for high‐temperature applications. Understanding the thermodynamic and kinetic stability of such materials is crucial for their practical application. We report here the dependence of structures and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites (CBCFs) on the pyrolysis temperature using spectroscopic methods and high‐temperature oxide melt solution calorimetry. The results indicate that a SiOC ceramic pyrolyzed at 1200°C and 1600°C is energetically stable with respect to an isocompositional mixture of cristobalite, silicon carbide, and graphite by 4.9 and 10.3 kJ/mol, respectively, and more energetically stable than that pyrolyzed at 1450°C. Their thermodynamic stability is related to their structural evolution. SiOC‐modified CBCFs become energetically less stable with increasing preparation temperature and concomitant increase in excess carbon content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.