Abstract

Ternary lead magnesium niobate-lead zirconate titanate system 0.4Pb(Mg(1/3)Nb(2/3))O(3)-0.25PbZrO(3)-0.35PbTiO(3) (40PMN-25PZ-35PT) thin film with a thickness of 1.5 μm was grown on Pt(111)/Ti/SiO(2)/Si substrate via chemical solution deposition. X-ray diffraction and transmission electron microscopy results suggested the film obtained was highly (111)-oriented. The remanent polarization and coercive electric field of the film were found to be 25.5 μC/cm(2) and 51 kV/cm, respectively. In addition, at 1 kHz, the dielectric constant was measured to be 1960 and the dielectric loss 0.036. The film was observed to undergo a diffuse ferroelectric-to-paraelectric phase transition at around 209°C. The leakage current appeared to depend on the voltage polarity. If the Au electrode was biased positively, the leakage current was dominated by the Schottky emission mechanism. When the Pt electrode was biased positively, the conduction current curve showed an ohmic behavior at a low electric field and space-charge-limited current characteristics at a high electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.