Abstract
CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In Caenorhabditis elegans, several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin. However, the molecular basis of these differences remains unknown. In this study, we refined the consensus RNA sequence and determined the differing binding specificities of the two zinc fingers of POS-1. We also determined the solution structure and characterized the internal dynamics of the TZF domain of POS-1. From the structure, we identified unique features that define the RNA binding specificity of POS-1. We also observed that the TZF domain of POS-1 is in equilibrium between interconverting conformations. Transitions between these conformations require internal motions involving many residues with correlated dynamics in each ZF. We propose that the correlated dynamics are necessary to allow allosteric communication between the nucleotide-binding pockets observed in the N-terminal ZF. Our study shows that both the structure and conformational plasticity of POS-1 are important in ensuring recognition of its RNA binding targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.