Abstract

Hydrogenoxalate (charge -1) and oxalate (charge -2) anions and their solvated forms were studied by various computational techniques. Ab initio quantum chemical calculations in gas phase, in implicit solvent and microsolvated (up to 32 water molecules) environment were performed in order to explore a potential energy surface of both anions. The solvation envelope of water molecules around them and the role of water on the conformation of the anions was revealed by means of Born-Oppenheimer molecular dynamics simulations and optimization procedures. The structure of the anions was found to be dependent on the number of water molecules in the solvation shell. A subtle interplay between intramolecular and intermolecular hydrogen bonding dictates the final conformation and thus an explicit solvent model is necessary for a proper description of this phenomena. Graphical Abstract Solvated hydrogenoxalate and oxalate anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.