Abstract

Theoretical study of the acetic acid dimer, its microhydration and its behavior in water and chloroform solution was performed. To characterize the system, we adopted ab initio methods at the DFT and RI MP2 (the resolution of the identity approximation MP2) levels for the gas-phase calculations, PCM (polarizable continuum model) approximation using the polarizable conductor calculation model (COSMO) for description of solvent, and constant energy (NVE) and constant temperature (NVT) molecular dynamics simulations for gas phase and explicit solvent calculations, respectively. The cyclic structure of the acetic acid dimer is the most stable in the gas phase only. During microhydration, the water molecules are incorporated in the dimer leading to water-separated structures. This conclusion is based on ab initio quantum chemical calculations, as well as on molecular dynamics simulations. The fact that the cyclic structure does not appear in water solution is in agreement with previous theoretical and experime...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.