Abstract
This report establishes the conditions for monitoring the intrinsic Trp phosphorescence of proteins encapsulated in silica hydrogels and demonstrates the usefulness of the delayed emission for examining potential perturbations of protein structure-dynamics by the silica matrix. Phosphorescence measurements were conducted both in low temperature (140 K) glasses and at ambient temperature on the proteins apo- and Cd-azurin, alkaline phosphatase and liver alcohol dehydrogenase together with the complexes of liver alcohol dehydrogenase with coenzyme analogs ADPR and H 2NADH. While spectral shifts and broadening indicate that alterations of the Trp microenvironment are more marked on superficial regions of the macromolecule the decay kinetics of deeply buried chromophores show that the internal flexibility of the polypeptide in two out of three cases is significantly affected by silica entrapment. Both the intrinsic lifetime and the bimolecular acrylamide quenching constant confirm that, relative to the aqueous solution, in hydrogels the globular fold is more rigid with azurin, looser with alcohol dehydrogenase and substantially unaltered with alkaline phosphatase. It was also noted that large amplitude structural fluctuations, as those involved in coenzyme binding to alcohol dehydrogenase or thermally activated in alkaline phosphatase, were not restricted by gelation. Common features of the three silica entrapped proteins are pronounced conformational heterogeneity and immobilization of rotational motions of the macromolecule in the long time scale of seconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.