Abstract
An investigation of structural and dynamical properties of Ni2+ in liquid ammonia has been carried out via Quantum Mechanical Charge Field Molecular Dynamics. By extending the quantum mechanical region to include first and second solvation shell, a more realistic representation of the system was achieved yielding improved results on present computational facilities. The structural results obtained from the 16ps trajectory agree well with experimental investigations for various nitrogen-containing Ni2+ systems. Detailed analysis of mean residence time and vibrational properties highlights a rather flexible structure of the first and second shells compared to Ni2+ in aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.