Abstract

The Core protein of hepatitis C virus is involved in several interactions other than the encapsidation of viral RNA. We recently proposed that this is related to the fact that the N-terminal half of this protein (C82) is an intrinsically unstructured protein (IUP) domain. IUP domains can adopt a secondary structure when they are interacting with another molecule, such as a nucleic acid or a protein. It is also possible to mimic these conditions by modifying the environment of the protein. We investigated the propensity of this protein to fold as a function of salt concentration, detergent, pH, and 2,2,2-trifluoro-ethanol (TFE); only the addition of TFE resulted in a structural change. The effect of TFE addition was studied by circular dichroism, structural, and dynamic data obtained by NMR. The data indicate that C82 can adopt an alpha-helical structure; this conformation is likely relevant to one of the functional roles of the HCV Core protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.