Abstract

Quantum chemical calculations at the BP86 level with various basis sets (SVP, TZVPP, TZ2P+) have been carried out for transition metal complexes of carbodiphosphorane analogues E(PPh3)2 with E = C–Pb. The nature of the W(CO)4–E(PPh3) bonds was analysed with charge and energy decomposition methods. The equilibrium structures of the tetrylone complexes W(CO)4–E(PPh3)2 possess for E = C, Si, Ge a trigonal bipyramidal coordination at tungsten with the tetrylone ligand occupying an equatorial position. The heavier homologues with E = Sn, Pb exhibit a square pyramidal coordination at tungsten where the tetrylone ligand is at a basal position, while one phenyl group is found trans to the apical CO group which yields a hexacoordinated tungsten complex. The bond dissociation energies for the W(CO)4–E(PPh3)2 bonds are higher than for the W(CO)5–E(PPh3)2 homologues. The bonding analyses of the complexes show that the W–E bonds have a significant contribution from (CO)4W←E(PPh3)2 π-donation. All complexes W(CO)4–E(PPh3)2 are suitable targets for synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.