Abstract

The structure, bonding, and stability of clusters with the empirical formula CE5- (E=Al-Tl) have been analyzed by means of high-level computations. The results indicate that, whereas aluminum and gallium clusters have C2v structures with a planar tetracoordinate carbon (ptC), their heavier homologues prefer three-dimensional C4v forms with a pentacoordinate carbon center over the ptC one. The reason for such a preference is a delicate balance between the interaction energy of the fifth E atom with CE4 and the distortion energy. Moreover, bonding analysis shows that the ptC systems can be better described as CE4- , with 17-valence electrons interacting with E. The ptC core in these systems exhibits double aromatic (both σ and π) behavior, but the σ contribution is dominating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call