Abstract

The strategy to remove the lone pairs of ligands combined with the bonding similarity between Li and Al have been utilized to design new planar tetracoordinate carbon (ptC) species C2v CLiAl2E and CLi2AlE based on ptC global minima CAl3E (E = P, As, Sb, Bi) clusters. The explorations of potential energy surfaces and high-level CCSD(T) calculations indicate that these planar tetracoordinate carbon (ptC) species with 16 and 14 valence electrons (ve) are the global minima except for CLiAl2P. Bonding analyses reveal that there is one π and three σ bonds between C and ligands, one delocalized σ bond between the peripheral ligands, and three/two lone pairs for CLiAl2E and CLi2AlE (E = P, As, Sb, Bi). Especially, the C=E double bonds are crucial for the stabilities of these ptC clusters. The ptC core is governed by 2π + 6σ bonding, which conforms to the 8-electron counting. Born–Oppenheimer molecular dynamics (BOMD) simulations reveal that CLiAl2E and CLi2AlE (E = P, As, Sb, Bi) clusters are robust against isomerization and decomposition. The results obtained in this work complete the series of ptC CLinAl3–nE (E = P, As, Sb, Bi; n = 0–3) systems and 18ve, 16ve, 14ve, and 12ve counting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.