Abstract

Density functional theory calculations have been performed for the dimethylgallyl complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaMe(2)] (M = Fe, Ru, Os; L = CO, PMe(3)) at the DFT/BP86/TZ2P/ZORA level of theory. The calculated geometry of the iron complex [(η(5)-C(5)H(5))(CO)(2)Fe(GaMe(2))] is in excellent agreement with structurally characterized complex [(η(5)-C(5)H(5))(CO)(2)Fe(Ga(t)Bu(2))]. The Pauling bond order of the optimized structures shows that the M-Ga bonds in these complexes are nearly M-Ga single bond. Upon going from M = Fe to M = Os, the calculated M-Ga bond distance increases, while on substitution of the CO ligand by PMe(3), the calculated M-Ga bond distances decrease. The π-bonding component of the total orbital contribution is significantly smaller than that of σ-bonding. Thus, in these complexes the GaX(2) ligand behaves predominantly as a σ-donor. The contributions of the electrostatic interaction terms ΔE(elstat) are significantly smaller in all gallyl complexes than the covalent bonding ΔE(orb) term. The absolute values of the ΔE(Pauli), ΔE(int), and ΔE(elstat) contributions to the M-Ga bonds increases in both sets of complexes via the order Fe < Ru < Os. The Ga-C(CO) and Ga-P bond distances are smaller than the sum of van der Waal radii and, thus, suggest the presence of weak intermolecular Ga-C(CO) and Ga-P interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call