Abstract

In this study, the spatial structures of a submerged turbulent jet interacting with a free surface were investigated experimentally. The jet axis was located at three different depths (H/D = 2, H/D = 4 and H/D = 6) beneath the free surface and the Reynolds number was fixed as 3480. Laser-induced fluorescence technique was used for qualitative visualization and the time-resolved particle image velocimetry technique was used for the quantitative measurements. The dynamics of the flow structures were examined further using the proper orthogonal decomposition analysis technique. The results revealed that the dynamic characteristics of large-scale turbulent motions were significantly different with the submerged depths. In case of H/D = 2, the dominant spatial structures displayed a surface vibration induced reverse flow along the boundary, and its subsequent deflection changed the flow structures in the horizontal center plane. The violent free surface vibration caused an unsteady up-and-down motion of the flow structures and had a “squeeze effect” on the flow structures. In case of H/D = 4, the upwelling motion of some vortices in the jet and their subsequently downward entrainment motion significantly changed the dominant spatial structures both in the vertical and horizontal central planes. When the jet was fully attached to the free surface, the vortical structures underwent a merging and restructuring process due to the vertical confinement of the free surface. In case of H/D = 6, the dominant spatial structures both in the vertical and horizontal central planes showed an approximately symmetric pattern, indicating that the dominant structures were not changed by the free surface. After attached to the free surface, the jet did not undergo a merging and restructuring process as shown in case of H/D = 4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.