Abstract

In this study, the characteristics of a round turbulent jet in the vicinity of a free surface are investigated. The jet issued from a nozzle located at a depth five times the nozzle diameter (d = 10 mm) below and parallel to the free surface. The jet exit velocity was 2.8 m/s and the resulting Reynolds number was 28,000. Instantaneous two-dimensional PIV measurements were obtained in the vertical central plane and in several horizontal planes at various distances (y/d = 0,±1,±2,±3± 4) from the axis of the nozzle. All fields-of-view were positioned at streamwise locations in the range of 28 < x/d < 62, where the jet interacts significantly with the free surface. The results reveal that the behavior of the surface jet is very similar to that of the free jet before it interacts with the free surface which occurs at about x/d = 30. Beyond this, the velocity normal to the free surface is diminished and those parallel to the free surface are enhanced in the region near the free surface. In the horizontal plane near the free surface (y/d = +4), the spreading of the surface jet is significantly greater than that of the free jet. The mean lateral flow in this region tends to be outward everywhere for the surface jet, while the opposite trend occurs in the free jet. Turbulence intensities in all three directions are reduced by the effect of the free surface confinement. Near the free surface, at y/d = +4, unlike the single peak streamwise turbulence intensity profile noticed in the case of the free jet, the off-axis double peaks reappear in the case of the surface jet. The magnitude of shear stress in the vertical central plane of the surface jet is smaller than that noticed in the free jet near the free surface. In identical horizontal planes, the shear stress (-uw¯) profiles are similar in both free jets and surface jets in regions where the interaction with the free surface is not significant (x/d ≈ 30). As the downstream distance increases near the free surface, the magnitudes of the shear stress profiles are larger compared to that of the free jet. An increase in the normal component of vorticity is observed in the horizontal planes near the free surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call