Abstract

The ZnSe thin films with different thicknesses have been deposited on polymer substrates for flexible optical devices applications. The XRD of different thicknesses for ZnSe films reveals the cubic structure of the films oriented along the (1 1 1) direction. The structural parameters such as particle size (40.41–105.24 nm) and lattice strain (6.5 × 10−3–14.7 × 10−3 lin−2m−4) were evaluated. Also AFM was used in order to obtain quantitative information on microstructure properties. The optical constants, the refractive index n and the absorption index k have been calculated from transmittance T and reflectance R through the spectral range of 400–2500 nm using Swanepoel’s method. The optical constants (n, k) were calculated in medium and transparent regions. The energy gap of direct transition for polycrystalline ZnSe thin films was calculated in the strong absorption region and found to be increased from 2.55 eV to 2.70 eV with the increasing the film thickness. ZnSe/flexible substrates are good candidates for optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.