Abstract
Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.