Abstract

CeO2 nanorods impregnated with 2.5 atom % of NiO (NiO/CeO2 nanorods) were successfully synthesized and examined as catalysts for the NH3-selective catalytic reduction (NH3-SCR) of nitric oxide (NO). The catalytic activity of NiO/CeO2 nanorods resulted in up to ∼90% NO conversion at 250 °C, which is superior to that of pure CeO2 nanorods or NiO nanoparticles. Subsequently, extensive studies of the NiO/CeO2-catalyzed reduction of NO were conducted using X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, temperature-programmed desorption, and density functional theory periodic calculations. Compared to that of the pure CeO2 nanorods, the results demonstrated that the NiO/CeO2 nanorods resulted in (i) a higher concentration of Ce3+ chemical species, (ii) a larger amount of active Oα, (iii) lower temperature reducibility, (iv) a lower amount of energy required for oxygen vacancy distortion, and (v) a significant adsorption of and strong interaction between NO and NH3 molecules. Our findings therefore elucidated considerable details of the structural properties of the NiO/CeO2 nanorods that were decisive for achieving a highly efficient conversion of NO by the NH3-SCR process at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call